Upregulating reverse cholesterol transport with cholesteryl ester transfer protein inhibition requires combination with the LDL-lowering drug berberine in dyslipidemic hamsters.
نویسندگان
چکیده
OBJECTIVE This study aimed to investigate whether cholesteryl ester transfer protein inhibition promotes in vivo reverse cholesterol transport in dyslipidemic hamsters. METHODS AND RESULTS In vivo reverse cholesterol transport was measured after an intravenous injection of (3)H-cholesteryl-oleate-labeled/oxidized low density lipoprotein particles ((3)H-oxLDL), which are rapidly cleared from plasma by liver-resident macrophages for further (3)H-tracer egress in plasma, high density lipoprotein (HDL), liver, and feces. A first set of hamsters made dyslipidemic with a high-fat and high-fructose diet was treated with vehicle or torcetrapib 30 mg/kg (TOR) over 2 weeks. Compared with vehicle, TOR increased apolipoprotein E-rich HDL levels and significantly increased (3)H-tracer appearance in HDL by 30% over 72 hours after (3)H-oxLDL injection. However, TOR did not change (3)H-tracer recovery in liver and feces, suggesting that uptake and excretion of cholesterol deriving from apolipoprotein E-rich HDL is not stimulated. As apoE is a potent ligand for the LDL receptor, we next evaluated the effects of TOR in combination with the LDL-lowering drug berberine, which upregulates LDL receptor expression in dyslipidemic hamsters. Compared with TOR alone, treatment with TOR+berberine 150 mg/kg resulted in lower apolipoprotein E-rich HDL levels. After (3)H-oxLDL injection, TOR+berberine significantly increased (3)H-tracer appearance in fecal cholesterol by 109%. CONCLUSIONS Our data suggest that cholesteryl ester transfer protein inhibition alone does not stimulate reverse cholesterol transport in dyslipidemic hamsters and that additional effects mediated by the LDL-lowering drug berberine are required to upregulate this process.
منابع مشابه
Liver X receptor activation promotes macrophage-to-feces reverse cholesterol transport in a dyslipidemic hamster model.
Liver X receptor (LXR) activation promotes reverse cholesterol transport (RCT) in rodents but has major side effects (increased triglycerides and LDL-cholesterol levels) in species expressing cholesteryl ester transfer protein (CETP). In the face of dyslipidemia, it remains unclear whether LXR activation stimulates RCT in CETP species. We therefore used a hamster model made dyslipidemic with a ...
متن کاملKiwifruit effect on adipose tissue cell size and cholesteryl ester transfer protein gene expression in high-fat diet fed Golden Syrian hamsters
Objective: The effects of kiwifruit on the histology and cell size of adipose tissue in hyperlipidemic models have not yet been reported. Therefore, this study aimed to investigate the effect of kiwifruit on the adipose tissue cell size and activity as well as the gene expression of cholesteryl ester transfer protein (CETP) in high-fat diet (HFD...
متن کاملIn vivo effects of anacetrapib on preβ HDL: improvement in HDL remodeling without effects on cholesterol absorption.
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol and lowers LDL cholesterol in dyslipidemic patients. We previously demonstrated that ANA increases macrophage-to-feces reverse cholesterol transport and fecal cholesterol excretion in hamste...
متن کاملCholesteryl ester transfer protein inhibition and endothelial function: enough with the surrogates.
Statins significantly reduce cardiovascular events in a broad category of patients at risk for or with established atherosclerotic cardiovascular disease; however, a substantial residual risk remains even when LDL-cholesterol (LDL-C) levels are lowered to 70 mg/dL. A part of this residual risk is related to low HDL-C levels. Epidemiological studies, the known favourable biological actions of HD...
متن کاملThe effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport.
AIMS Cholesteryl ester transfer protein (CETP) has a well-established role in lipoprotein metabolism, but the effect of its overexpression or inhibition on the efficiency of reverse cholesterol transport (RCT) is unclear. METHODS AND RESULTS Neither overexpression of CETP nor treatment with CETP inhibitor Torcetrapib of RAW 264.7 macrophages or HepG2 hepatocytes affected cholesterol efflux in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 1 شماره
صفحات -
تاریخ انتشار 2013